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Direct and inverse problems of heat exchange in a supersonic spatial flow past the front part of an aircraft
in the form of a spherically blunted nose cone have been solved numerically. The prospects of using high-
heat-conductivity materials and the blowing of the gas-coolant for lowering the temperature on the surface of
an aerodynamic body have been shown. A comparison of the solutions of the direct and inverse problems in
one-, two-, and three-dimensional formulations for various materials of the sheath has been made. The error
in recovering the heat flow by the thin-walled method has been estimated.

Under the interaction of high-enthalpy gas flows with aircraft (AC), one of the most complicated problems is
the thermal protection of their structures. To solve it, both passive and active methods of thermal protection and com-
bined methods based on blowing of the gas-coolant into a high-enthalpy gas flow from porous structural elements with
a simultaneous heat flow on the surface due to the choice of the high-heat-conductivity material of the composite
sheath [1–6] are used. To investigate and substantiate them, along with the methods for solving direct problems (DP)
[1–3], methods for solving inverse problems (IP) are used [4–6]. Because of the extreme operating conditions of the
structures, lack of information about the processes being investigated, and the increasing requirements on accuracy of
determination of the heat-exchange characteristics on the surface of aerodynamic bodies, the application of the latter in
wide ranges of change in the process time and properties of the material is becoming particularly urgent [7].

To solve multidimensional boundary IPs, the iteration regularization method has proved to be good [8, 9]. For
mathematical models of the mechanics of reacting media, this method complements the regularized numerical methods
well [10]. In [5, 6], the latter were successfully used to solve three-dimensional boundary IPs of a supersonic spatial
flow. The use of three-dimensional formulations in these problems is necessitated by the fact that as an aircraft moves
at the angle of attack, the heat flows on its front part not only along the longitudinal but also along the circular co-
ordinate due to the wide difference between the thermal flows on the windward and leeward sides. Blowing of the
gas-coolant promotes a decrease in the temperature in the region of the porous spherical dulling, and the use of high-
heat-conductivity materials leads to a heat flow from the peripheral part of the cone into the porous nose [3, 4, 6].
The separate and combined influence of these processes in the spatial case on the recovered temperature and thermal
flow in wide ranges of change in the thermophysical characteristics of the sheath material and the process time re-
quires a detailed study and substantiation. Of undoubted interest is also the estimation of the validity range of the sim-
pler one- and two-dimensional algorithms of solving direct and inverse heat-exchange problems and the widely used
thin-wall method for determining the heat flow at the boundary of an aerodynamic body.

In the present paper, using the complete mathematical formulation of the problem on heating of a spherically
blunted nose cone and the developed algorithms for solving three-dimensional and inverse problems from [5, 6], we
have investigated the influence of the heat flow along the longitudinal and circular coordinates and the blowing of the
gas-coolant on the heat-exchange characteristics in a wide range of change in the thermophysical characteristics of the
sheath material. The error in solving direct and inverse problems on the basis of one-, two-, and three-dimensional
mathematical models has been found. The possibility of using the thin-wall method to recover the thermal flow at the
interface has been analyzed.

Physical and Mathematical Formulation of the Direct and Inverse Problems. We consider the heating of
an equidistant composite sheath of a spherically blunted nose cone flown at the angle of attack by a supersonic air
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flow (Fig. 1). The heat-and-mass transfer process in a sheath consisting of a penetrable spherical part and an impene-
trable conical part with allowance for the assumptions that the filtration process of the blown gas in the direction of
the normal to the surface is one-dimensional and the porous medium in the natural coordinate system connected with
the surface of the body with the origin of coordinates at the frontal critical point 0 has one temperature is described
by the energy equation for the porous spherical dulling (Fig. 1, region I)
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and the heat-conduction equation for the conical part of the sheath (Fig. 1, region II)
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 ,   sA < s < sB ,   0 < n1 < L ,   0 < η < π ,
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(2)

with the corresponding initial and boundary conditions
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Fig. 1. Scheme of heating of the composite sheath in the η = 0, η = π sym-
metry planes.
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s
_
 = s ⁄ RN ,   H = (RN − n1) ⁄ RN ,   r1 = (RN − n1) sin s

_
 ,

r2 = (RN − n1) cos θ + (s − sA) sin θ ,   s = sA + cos
−1

 θ [z + (sin θ − 1) RN] .

In determining the temperature T(n1, s, η, t) in the composite sheath from the DP solution, the heat flow from
the gaseous phase qw is given by the formulas from [11] for the spatial laminar and turbulent flow conditions in the
boundary layer. The decay of the heat flow due to the blowing of the gas-coolant having the same composition as the
free air stream is taken into account by the formulas from [12]. As a result, in the coordinate system connected with
the stagnation point O1 on the porous spherical part for the laminar flow conditions in the boundary layer we have
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for the turbulent flow conditions
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The heat flow in the screening zone with allowance for the blowing is defined by the formula [2, 13]
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For the flow rate of the gas-coolant according to the law (ρv)w(s~) = (ρv)w(0)(1 + a sin2 s~ ) we have [2]
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In solving the three-dimensional IP, the temperature Tw(s, η, t), the convective stream qw(s, η, t), and the
total Qw(s, η, t)  = qw(s, η, t) − εσTw

4  heat fluxes at the boundary are determined on the basis of the mathematical
model (1)–(3), (6)–(10) and the given temperature on the back of the sheath

T (L, s, η, t) = Tins
exp

 (s, η, t) . (18)

Algorithms for Solving the Direct and Inverse Problems. In solving three-dimensional DPs and IPs, the al-
gorithms from [5, 6] based on the method of splitting in spatial variables n1, s, and η were used [14]. In the direct
problem, the one-dimensional energy and heat-conduction equations obtained as a result of the splitting on each time
layer were calculated with a variable step by the iteration-interpolation method (IIM) [15] with iterations over coeffi-
cients with a given accuracy. The temperature in the direction was calculated throughout, beginning with the windward
side and ending with the leeward one with the fulfillment at the point s = 0 of the "matching" conditions (equality of
temperatures and heat flows), since when the body is moving at a nonzero angle of attack the symmetry condition at
the point s = 0 is no longer fulfilled. As a result, to calculate the sheath temperature, it is enough to vary the circular
coordinate from 0 to π/2. For other values of η the temperature was determined from the symmetry condition at η =
0 and η = π, which reduced the counting time of the problem by one-half. The systems of difference equations for
temperature determination in the directions of n1, s, and η obtained by the IIM logical scheme were solved by the
methods of nonmonotonic (in the direction of n1 and s) and cyclic (in the direction of η) runs [16].

In the three-dimensional IP, upon application of the splitting method on each time layer the temperature in the
direction of n1 was calculated by the method of solving the one-dimensional IP from [5] on the basis of the known
temperature Tins

exp(s, η, t), and in the directions of s and η — by the IIM. The temperature obtained on the previous
time layer was used as the initial temperature for calculating the temperature on the next layer, and so on. By the
found temperature field the total thermal flux Qw(s, η, t) was found, and then from the boundary conditions (4) and
(5) the convective thermal flow qw(s, η, t) was found. The advantage of the applied method of solving the three-di-
mensional IP is that it permits investigating both fast and slow heat-exchange processes. Stability of the IP solution
was attained due to the application of the implicit difference scheme of the IIM, which is closely related to the theory
of splines, and the smoothing of the initial temperature Tins

exp(s, η, t) by either A. N. Tikhonov’s regularization method
[17] or cubic spline-functions, including two-dimensional ones [18]. If required, solution regularization in the directions
of s and η by the method of [17] was used. The applied methods of solution instability suppression proved to be good
in solving various one-dimensional [10] and two- and three-dimensional IPs [4–6].

Results of the Numerical Calculations. Numerical calculations of three-dimensional DPs and IPs were car-
ried out on a Pentium-3 PC by programs developed in Fortran. The time of solving the reference three-dimensional
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variants of the direct and inverse problems up to the stationary temperature distribution (t = 200 sec) on a 11 × 41
× 13 computational mesh was C9 min. The direct and inverse problems were tested at the level of both individual
program modules and programs as a whole. The main modules such as the solution of a one-dimensional parabolic
equation of the general form with the most general boundary conditions and the solution of a one-dimensional bound-
ary IP for this equation were checked on the known solutions [15, 19]. Testing of the spatial DP in a particular case
as t → ∞ without taking into account the heat flow on s and η was carried out by comparing the stationary tempera-
ture of the surface Tw,st with the radiation equilibrium temperature Tw,eq. As tests, the numerical solutions from [3, 6]
were also used. Testing of the spatial IP was carried out by comparison with the "exact" solution, as which the nu-
merical solution of the spatial DP acted.

In the boundary layer, the laminar regime of the flow on a porous spherical sheath in the vicinity of the stag-
nation point and the turbulent regime on the remaining part of the spherical sheath and on the cone were considered.
We used the popular model of the point laminary–turbulent transition in which the transition point s~∗  was determined
from the condition of the change of the difference sign of values (α ⁄ cp) for the laminar (12) and turbulent (15) flows
in the [0, s

_
1] range and depended on the parameters in formulas (12) and (15).

Serial calculations were performed for the diagnostic variables from [3, 6]: cpΣ = cp1ρ1(1 − ϕ) + cpgρgϕ, λΣ =
λ1(1 − ϕ) + λgϕ, cpg = b1 + b2T, b1 = 965.5, b2 = 0.147, Tin = T∞ = 300 K, cp∞ = 103 J/(kg⋅K), ρg = 1.3 kg/m3, λg
= 0.026 W/(m⋅K), L = 0.005 m, εi = 0.85 (i = 1, 2), RN = 0.0185 m, ρ∞ = 0.208 kg/m3, V∞ = 2080 m/sec, β =
20o, Θ = 5o, ϕ = 0.34, γ = 1.4, M∞ = 6, Pr = 0.72, ζ1 = 0.285, ζ2 = 0.165, and a = 0. As a sheath material, we
considered a high-heat-conductivity material (copper, λ = 386 W/(m⋅K), ρ = 8950 kg/m3, cp = 376 J/(kg⋅K), a low-
heat-conductivity material (carbon-filled plastic, λ = 0.75 W/(m⋅K), ρ = 1350 kg/m3, cp = 1062 J/(kg⋅K)), and a ma-
terial with intermediate values of the thermophysical characteristics (steel, λ = 20 W/(m⋅K), ρ = 7800 kg/m3, cp = 600
J/(kg⋅K)). The pressure distribution on the body surface pe

 ⁄ pe0 was found from the solution of the spatial gas-dynamic
problem [20]. Figures 1–5 show the results of solving the direct and inverse problems with no allowance for the blow-
ing, and Figures 6–9 show them with allowance for the blowing (ρv)w = 1.626 kg/(m2⋅sec) in the symmetry planes of
η = 0 and η = π (except for Fig. 8, where the solution results are given in the planes of η = π/2 and 3π/2).

Figure 2 shows the distributions of the stationary temperature of the surface Tw,st (t = 200 sec) over the s
_
 co-

ordinate on the windward (s
_
 > s
_

O1
) and leeward (s

_
 < 0) U (0 < s

_
 < s
_

O1
) sides for sheaths from different materials. The

radiation equilibrium temperature Tw,eq was found from the energy equations on the spherical and conical surfaces:

qw − εiσTw,eq
4

 = 0 . (19)

It determines the maximum attainable temperature of the surface in the absence of heat flow in the longitudinal and
circular directions. As would be expected, the strongest effect of the heat flow is observed in the copper sheath and
the weakest effect — in the carbon-filled plastic sheath. For the latter, the stationary surface temperature differs from

Fig. 2. Tw,st distributions over s
_
: 1) for the copper sheath; 2) for the steel

sheath; 3) for the carbon-filled plastic sheath; 4) Tw,eq( s
_

 );  5) Tw,st(s
_
) at

λ → ∞. Tw,st, K.
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the radiation equilibrium temperature only slightly, since the heating process for it is close to the one-dimensional one.
As a result of the heat flow along the longitudinal and circular coordinates, Tw,st for the copper sheath is much higher
than Tw,eq on the leeward side and more than 100 K lower on the windward side. For the steel sheath the difference
between these temperatures begins to show up appreciably only on the leeward side and is insignificant on the wind-
ward side. The results of the calculation of the steady-state regime of the process as λi → ∞ (i = 1, 2) show that flat-
tening of the temperature profile in the aerodynamic material occurs. The highest value of the stationary surface
temperature for all considered materials is observed in the region of the peak thermal flux for the turbulent regime in
the boundary layer near the stagnation point.

Figure 3 illustrates the illegitimacy of using one-dimensional and two-dimensional formulations in solving DPs
for high-heat-conductivity materials of the type of copper. Here curves 1 were obtained with allowance for the heat
transfer in the directions of n1, s

_
, and η, 2 – n1, s

_
, and curves 3 — in the n1 direction. As the time is changed from

1 to 5 sec, there is an approximately twofold increase in the surface temperature and a decrease in the total thermal
flux, and neglect of the heat flow in the s

_
 and η directions leads to large errors of their determination.

Figure 4 shows the inaccuracy in using one-dimensional and two-dimensional formulations in solving IPs for
high-heat-conductivity materials of the type of copper. Taking into account the complicated nonmonotonic dependence
Qw(s

_
), the accuracy of recovering the heat flow from the solution of the three-dimensional IP can be considered to be

good. At the same time, neglect of the heat flow along the circular coordinate (curve 2) and the longitudinal and cir-
cular coordinates (curve 3) leads to large errors in determining the heat flow and even to a qualitative change in its
behavior. The results obtained point to the necessity of using three-dimensional algorithms for solving IPs in recover-
ing the heat flow into a sheath from a high-heat-conductivity material.

Figure 5 illustrates the good potentialities of the proposed algorithm of solving a three-dimensional IP in re-
covering the surface temperature and the heat convective flux on both nonstationary and stationary portions of the
body heating. Here the solution by the thin-wall method was found by the formula

Qw (s
_
, η, t) = qw (s

_
, η, t) − εiσTw

4
 = ρcpL 

dTw

dt
 .

There is a good agreement between the "exact" and numerical solutions of the three-dimensional IP. For the
surface temperature, this agreement is to within graph. At the same time, the thin-wall method cannot be employed to
recover heat convective fluxes in using high-heat-conductivity materials of the type of copper, since it leads to a large
quantitative and qualitative disagreement with the "exact" solution.

Figure 6 shows the influence of the gas-coolant blowing on the s
_
-distribution of the stationary surface tem-

perature Tw,st (t = 200 sec) and the radiation equilibrium temperature Tw,eq on the windward and leeward sides of the
aerodynamic body. The radiation equilibrium temperature on the conical part of the sheath was found, as before, by

Fig. 3. Dependences of Tw (a) and Qw (b) on s
_
 for the copper sheath at t = 1

sec (groups of curves I) and 5 sec (groups of curves II) obtained from the so-
lution of the three-dimensional (1), two-dimensional (2), and one-dimensional
(3) DPs. Tw, K; Qw, W/m2.
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formula (19), and on the spherical part — from the condition of energy conservation on the surface with allowance
for the stationary solution for the thin porous sheath:

qw − εσTw,eq
4

 = (ρv)w cpg (Tw,eq − Tin) .

From Fig. 6 it is seen that the blowing of the gas-coolant decreases the stationary temperature of the surface
and the radiation equilibrium temperature. On the leeward side of the porous spherical dulling at the point of
s
_
 C −1.35, for example, the difference of the stationary values of temperatures obtained without allowance and with al-

lowance for the blowing is about 430 K for the copper sheath, 750 K for the steel sheath, and 1020 K for the carb-
on-filled plastic one. And the radiation temperature values at this point differ by about 1050 K.

The sharply defined minimum in the radiation equilibrium temperature distribution is due to the fact that as
the body moves at the angle of attack, the stagnation point moves to the windward side. As a result, the additional
mass of the cold gas-coolant flows to the leeward side, which leads to a decrease in the thermal flow and the surface
temperature. Mathematically, this shows up as an increase in the parameter b in the formula for the heat convective
flux in the screen zone (17) characterizing the ratio of the total mass of the blown gas to the product of the heat-ex-

Fig. 4. Qw distributions over s
_
 at t = 1 sec (a) and 5 sec (b) for the copper

sheath obtained from the solution of the three-dimensional (1), two-dimensional
(2), and one-dimensional (3) IPs; 4) "exact" solution. Qw, W/m2.

Fig. 5. Distributions qw over s
_
 at t = 1 (a), 5 (b), and 200 sec (c) obtained

from the solutions of the three-dimensional IP (1); by the thin-wall method
(2); 3) "exact" solution. qw, W/m2.

Fig. 6. Dependences of Tw,st on s
_
 for the copper (1, 1′), steel (2, 2′), and carb-

on-filled plastic (3, 3′) sheaths; 4, 4′) Tw,eq( s
_

 ), 1′, 2′, 3′, 4′) with allowance for
the blowing. Tw,st, K.
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change coefficient in the considered section s in the absence of blowing by the cone surface area from s1 to the cur-
rent value of s [2].

Because of the heat flow from the peripheral part of the cone into the porous nose, the temperature on the
windward peripheral part of the cone decreases with increasing heat conductivity coefficient of the material λ. On the
leeward peripheral part of the conical surface, Tw,st behaves nonmonotonically depending on the heat-conductivity co-
efficient λ, which is due, as in the case of the absence of blowing [5], to the nonmonotonic behavior of the thermal
flow along the circular coordinate η and the heat flow in the circular direction. On the porous spherical part in the
vicinity of the front critical point, where the laminar flow in the boundary layer is realized, an increase in the heat-
conductivity coefficient λ is followed by an increase in the stationary surface temperature.

Because of the heat flow along the longitudinal and circular coordinates, the stationary surface temperature on
the peripheral part of the cone for the copper sheath on the windward side is about 200 K lower than for the steel
and carbon-filled plastic sheaths. On the peripheral part of the cone on the leeward side the increase in this tempera-
ture is somewhat smaller.

Figure 7 shows the influence of the thermophysical properties of the sheath material on the stationary surface
temperature distributions on the longitudinal coordinate. Here curves 1 were obtained with allowance for the heat
transfer on n1, s

_
, and η, curves 2 — on n1 and s

_
, curves 3 — on n1 and η, and curves 4 — on n1. The radiation

equilibrium temperature 5 coincided to within graph with the stationary surface temperature 4, which is one of the
confirmations of the reliability of the calculations. Analysis of the results presented shows that the influence of the
heat flow on the stationary surface temperature distribution for the carbon-filled plastic sheath is practically absent and
the influence of the heat flow for the steel sheath is immaterial everywhere, except for the point of s

_
 ≈ −1.48, where

the difference is about 100–150 K. And it is very essential to take into account the heat flow in all directions for the
copper sheath, where the difference is a few hundred degrees.

Fig. 7. Dependences of Tw,st on s
_
 for the copper (a), steel (b), and carbon-filled

plastic (c) sheaths obtained from the solution of the three-dimensional (1), two-
dimensional (2, 3), and one-dimensional (4) DPs; 5) Tw,eq( s

_
 ). Tw,st, K.
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Figure 8 gives the stationary surface temperature distributions for the copper sheath on the longitudinal coor-
dinate in the planes of η = π/2 and η = 3π/2. From comparison of these figures it follows that in the planes of η =
π/2 and η = 3π/2 compared to the planes of η = 0 and η = π the temperature decreases on the windward side and
increases on the leeward side, and the temperature profiles are symmetric about the point of s

_
 = 0.

And, finally, Figure 9 illustrates the inexpediency of using the thin-wall method to recover the thermal flow
Qw into a sheath made of a high-heat-conductivity material in the presence of blowing. Here the solution by the thin-
wall method was found by the formula

Qw (s
_
, η, t) = qw (s

_
, η, t) − εσTw

4
 = ρcpL 

dTw
dt

 + (ρv)w cpg (Tw − Tg) .

As a result of the numerical calculations, it has been shown that the proposed three-dimensional algorithm for
solving IPs is stable to perturbations of the input temperature Tins

exp(s, η, t) and permits recovering heat convective
flows in a wide range with allowance for the gas-coolant blowing.

CONCLUSIONS

Using the proposed algorithms of solving three-dimensional direct and inverse heat-exchange problems, we
have investigated the influence of the heat flow along the longitudinal and circular coordinates and the gas-coolant
blowing on the characteristics of the spatial heat exchange. The effectiveness of simultaneous use of high-heat-conduc-
tivity materials and gas-coolant blowing in order to lower the maximum temperatures on thermally stressed parts of
the surface of the aerodynamic body has been shown. The error of recovery of the heat-exchange characteristics on the
surface of high-heat-conductivity materials has been determined by means of the one- and two-dimensional algorithms
for solving direct and inverse problems and the thin-wall method.

NOTATION

t, time, sec; r and z, transverse and longitudinal components of the cylindrical coordinate system; n1, s, η,
components of the natural coordinate system; T, temperature, K; p, pressure, Pa; ρ, density, kg/m3; (ρv)w, gas-coolant
flow in pores, kg/(m2⋅sec); cp, heat-capacity coefficient, J/(kg⋅K); λ, heat-conductivity coefficient, W/(m⋅K); hr, recov-
ery enthalpy, J/kg; hw, gas enthalpy on the wall, J/kg; he0, gas enthalpy at the outer boundary of the boundary layer

Fig. 8. Dependences of Tw,st on s
_
 for the copper sheath in the η = π/2 and

η = 3π/2 planes obtained from the solution of the three-dimensional (1), two-
dimensional (2, 3), and one-dimensional (4) DPs; 5) Tw,eq( s

_
 ). Tw,st, K.

Fig. 9. Qw distributions over s
_
 at t = 1 (a) and 5 sec (b) obtained from the

solution of the three-dimensional IP (1) and by the thin-wall method (2); 3)
"exact" solution. Qw, W/m2.
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at the stagnation point, J/kg; H, r1, r2, Lame′  coefficients; r
_

2w, dimensionless Lame′  coefficient on the outer surface of
the conical part of the body; α, heat-transfer coefficient, W/(m2⋅K); RN, spherical dulling radius, m; ϕ, porosity; s

_
, di-

mensionless longitudinal coordinate; σ, Stefan–Boltzmann constant, W/(m2⋅K4); εi (i = 1, 2), radiating capacity of the
surface of the aerodynamic material; qw, heat convective flow from the gaseous phase, W/m2; Qw, total heat flow into
a solid body, W/m2; β and θ, angle of attack and cone angle, deg; Pr, Prandtl number; γ, adiabatic exponent; L, sheath
thickness, m; V∞, ρ∞, and M∞, rate of motion, density, and Mach number in the incident flow, m/sec, kg/m3; ue, ve-
locity of gas at the outer boundary of the boundary layer, m/sec; vm, maximum velocity of gas, m/sec; Tins

exp, tempera-
ture on the inner surface of the body sheath, which is the initial "experimental" temperature in solving the inverse
problem; s~, dimensionless longitudinal coordinate in the coordinate system with origin at the stagnation point O1; s~∗ ,
coordinate of the laminar-turbulent transition point in the coordinate system with origin at the stagnation point; b, pa-
rameter in the formula for the heat convective flow in the screening zone (17); ζ1, ζ2, approximation parameters in the
formula for the heat flow in the screening zone (17); b1, b2, approximation parameters in the formula for the heat ca-
pacity of gas cpg. Subscripts: ∞, incident flow; e, outer boundary of the boundary layer; e0, outer boundary of the
boundary layer at the stagnation point; w, gas-solid interface; ins, inner surface of the sheath; r, recovery; exp, experi-
ment; 1, 2, numbers of regions of the composite sheath; g, gas in the porous medium; in, fin, *, m and Σ, initial,
final, characteristic, maximum, and total values of quantities; overscribed bar, for dimensionless quantities; (0), for
heat-exchange parameters (α ⁄ cp), qw, in the absence of blowing; st, for stationary temperature; eq, for radiation equi-
librium temperature.
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